Fast single image super-resolution based on sigmoid transformation
نویسندگان
چکیده
Single image super-resolution aims to generate a high-resolution image from a single low-resolution image, which is of great significance in extensive applications. As an ill-posed problem, numerous methods have been proposed to reconstruct the missing image details based on exemplars or priors. In this paper, we propose a fast and simple single image super-resolution strategy utilizing patch-wise sigmoid transformation as an imposed sharpening regularization term in the reconstruction, which realizes amazing reconstruction performance. Extensive experiments compared with other state-of-the-art approaches demonstrate the superior effectiveness and efficiency of the proposed algorithm.
منابع مشابه
A Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملSuper Resolution Blind Reconstruction of Low Resolution Images using Wavelets based Fusion
Crucial information barely visible to the human eye is often embedded in a series of low resolution images taken of the same scene. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. The ideal algorithm should be fast, and should add sharpness and details, both at edges and in regions without adding artifacts. In this...
متن کاملFast Single Image Super Resolution Reconstruction via Image Separation
In this work, a fast single image super resolution reconstruction (SRR) approach via image separation has been proposed. Based on the assumption that the edges, corners, and textures in the image have different mathematical models, we apply different image SRR algorithms to process them individually. Thus, our approach is divided into three steps: 1) separating the given image into cartoon and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.07029 شماره
صفحات -
تاریخ انتشار 2017